Practicing Meta-dynamics on the Muller-Brown
Potential Energy Surface

1. Introduction to Meta-dynamics

Based on my interest in the molecular dynamics(MD)m, my advisor recommended that | learn

the PLUMED!?! plugin to deepen my understanding of MD capabilities and become familiar with
state-of-the-art enhanced sampling techniques.

After hearing this advice, | did some research and discovered the PLUMED Masterclasses!”!
which gather experts to explain cutting-edge methods and how to solve challenging problems.
In this post, | will explain some parts of Masterclass 9. In some blog post in the future | will
proved some challenges with the production of the state-of-art pipeline for the drug testing of
the preclinical phase. That will only be our concern. In the multiple posts | will try to provide the
path to getting the understanding of the highly accurate meta dynamics-based calculation!”!
of protein-protein and protein-ligand binding potencies.

As a motivation, | was inspired by recent research on glycine formation. In that work, glycine
was hypothesized to form stepwise from smaller molecules and was investigated using
exploratory CPMD!°! and free energy simulations!®.. Ab Initio Study of Glycine Formation in
the Condensed Phase: Carbon Monoxide, Formaldimine, and Water Are Enough provides the
basis for much of this blog post. This study served as my entry point into the field.



https://iopscience.iop.org/article/10.3847/1538-4357/acea5b
https://iopscience.iop.org/article/10.3847/1538-4357/acea5b
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Stepwise reactions observed in the glycine formation study (Francisco Carrascoza et al 2023).
This diagram from the article shows a sequence of reactions (system S3V0) starting from
carbon monoxide and formaldimine in water and ultimately forming glycine. (We will not delve
into these specific reactions here; Figure 1 is meant to illustrate the kind of complex pathways
meta-dynamics can discover.)

When | came across the lecture on reaction pathwaysm, | was able to put this idea into
practice, but first | need to work through the simpler examples.

2. Enhanced-Sampling Tasks
2.1 Key Concepts

Path-meta-dynamics (PMD)[8] is an enhanced sampling method that simultaneously
converges a transition pathway and computes the free-energy profile along that path. It
achieves this by performing meta-dynamics on an adaptive reaction path connecting two stable
states — thereby yielding either an average transition path or the minimum free-energy path

(MFEP)[g], depending on parameters.

To simplify computation and visualization, we will employ a basic model system. We’'ll use

PLUMED’s PESMD module standalone without coupling it to any MD engine“o] or full



molecular system so GROMACS won'’t be required for this task. These enhanced-sampling
techniques can be applied to existing studies with minimal modifications, which bodes well for
investigations of glycine formation.

We don't want to wait a lot of time for those things to do some interesting things so we just use
few key descriptive degrees of freedom of the transition, commonly called collective variables.

The choice of CV's is a task of great importance. In the glycine system | would have to came up
with the CV's for example in this task the free energy surface!''! (FES) is fully known and
described by a set of N CV's, z;(¢q) with i = 1.. N, which are all functions of system's particle
positions ¢(t) We will also assume that these particle positions ¢(t) evolve in time with a

canonical equilibrium distribution['?! at temperature T under a potential V(g).

For example in the research authors explicitly describe several CVs that biased or restrained
during their meta-dynamics/CP-MD runs:

In the exploration stage - drive the system from reactants toward glycine they used the path
CVssand z.
s measures progress along a reference pathway built from reactant to product
structures; z is the orthogonal deviation from that path. The distance metric for the path
was the distance-mean-square deviation (DMSD) in exploration and the MSD in FES
runs.

When they calculated free-energy-surfaces (FES) calculations, the same path CV z was
kept within 0.14 Angstrom
The cartesian inter-atomic distances between selected atoms(e.g, the two carbon atoms
that form the new C-C bond, and the C of CO with the O of a nearby water). Which is very
similar to the example that was used in the master class that used similar distances and the
angles between the atoms.
In the proton-transfer sub-reaction which is a usual thing in the molecular dynamics(water to
formaldimine formulation) the N — H cartesian distance was measured between the
nitrogen of formaldimine and a proton from a water molecule.
Only two reference points (neutral and protonated) were needed; bias was applied
directly to this distance.


https://iopscience.iop.org/article/10.3847/1538-4357/acea5b
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Representation of the time scale for the "rare events" which we describe in the manner of
changes in the chemical reaction. For example we're interested in the nanosecond scale.
Slide from representation the plumed masterclass 9.

2.2 Rare Events in MD

In molecular systems, the experimentally observed timescales on which they occur, and why
each regime is painful to simulate with straightforward MD.
Each type of those timescales give us different properties.

Electronic excitation and non-radiative decay (photo-excitation, internal conversion). Which
is on timescale of 1 — 100fs (10715 — 107135). The nuclear motion is slower than electronic
motion, because of that classical MD cannot follow electrons. Needs sub-fs steps. In my
example simulations that are in my github repository is an example of a simulation that was
done in timestep dt in picoseconds(ps) asa dt = 0.0002ps is a 0.0002ps x 103%3 =2fs.in
that case full quantum treatment of electrons and nuclei(nonadiabatic dynamics), tiny time
steps, high cost of excited-state potential energy surfaces are key simulation challenges.

For those problems we have mixed quantum-classical techniques like surface hopping but

that's not for now to talk about.

The last was contact control during FES runs. The coordination-number CV between heavy-
atom groups (G1, G2) were used. They restrained or monitored the number of contacts. Defined

with the standard smooth switching function!'3! in PLUMED.

For the meta-dynamics we are interested in exploring the space spanned by the CVs. z; and
quantifying the free energy. In order to do so, in meta-dynamics we exert a history-dependent


https://github.com/kGorze/TIP4P-Water-Model/blob/main/TIP4P_compressability/md.mdp
https://en.wikipedia.org/wiki/Surface_hopping
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repulsive potential by summing Gaussian kernels! '/ over time. That's the summation

N z;—2;(q(kT)))?
Vhias (2,8) = Sgreq H(br) exp (— 301, E5UG )

2.3 Gaussian Kernel: Derivation & Interpretation

Lets start with the easy examples. We should think of gaussian kernel as a smooth, bell-shaped
hill that you drop at a specific point in space( or along a variable). Here's a breakdown:

The “Bell Curve” Shape in Gaussian is just the familiar bell curve you’ve seen in statistics
class. It's highest at its centre and falls off smoothly as you move away. In many algorithms
(like meta-dynamics, or in machine learning methods such as kernel density estimation), we
place (“kernel”) a little bell-shaped hill wherever the system visits. Each hill nudges the
system away from places it's already been, encouraging exploration. Mathematically, in one
dimension it looks like

— 2
K(z) = exp (— a;202 0)

where z, is the centre of the hill and o controls the ditch (a larger o means a fatter, wider
hill)

Gaussian Kernel: K(x) = exp(ZX=22%)
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With the centre almost on the origin ( zo ~ 0) and a small width o ~ 0.77, the Gaussian
forms a tall, needle-like peak that falls to near-zero within just a few units of x. This setting
illustrates a kernel that gives very local influence: it strongly weights points right at x, while
rapidly discounting anything farther away.


https://en.wikipedia.org/wiki/Kernel_density_estimation

Gaussian Kernel: K(x) = exp(*(’(*xolz)

2
A xg==2.72 20
o=2.74 — Gaussian Kernel
1.0 Xp (center)
0.8 A
. 0.6
%
7
0.4 4
0.2 4
o (center) I 1 -2.72
0.0 . o (width) ﬁ. 274
-10.0 7.5 -5.0 —-2.5 0.0 2.5 5.0 7.5 10.0
b 4
Fig. 4

Here the bell’s centre is moved to xy ~ —2.7 and the width is widened to o ~ 2.7, producing a
lower-slope mound that stays above zero across much of the axis. The larger o spreads the
kernel’s influence over a wide range, while the shift in x, simply translates the entire curve
without altering its shape.

after that we have several variables(let's say z and y), you just combine two such bells into one
2D hill

[(x —20)? + (¥ — 0)?] )

Ko = o (- EZ50
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The 3D surface shows a smooth, gently rounded Gaussian that tops out near
(z0,y0) ~ (—0.14,0.79). With a width of o ~ 1.3 the peak is neither needle-thin nor extremely
flat, so the kernel still dominates close to its centre but fades only gradually as you move a few
units away. The concentric rings in the contour plot confirm this: their spacing widens slowly,
signalling a fairly broad region of influence around the red centre point.
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Here the kernel is pushed to (zo, yo) ~ (1.8, —2.0) and squeezed to a narrow o ~ 0.48. The 3D
view reveals a steep, slender spike whose base occupies just a small patch of the plane.
Correspondingly, the contour plot displays only a handful of closely packed rings around the red
dot, illustrating how quickly the kernel’s weight plummets: it grants strong emphasis to points
very near (1.8, —2.0) and almost none elsewhere.

[15] the system around. The bias only

The hill is infinitely smooth, no sharp corners. It won'’t jerk
affects the nearby region(because it decays exponentially), so we only push the system out of

the places it's already been sampled well.

Now when we know what the Gaussian kernel is, we can take the natural next step in the meta-
dynamics formalism: first we recall that in the long-time limit the accumulated bias exactly
cancels out the underlying FES. In other words, if you keep dropping these Gaussian hills
forever, the sum of all those hills fills in every free-energy well so that

tlim Viias(2,t) = —F(2) + const.
—00
where F(z) is the true free energy as a function of the collective variables z

So putting it all together we:

Deposit Gaussians every 7 time units at the current CVs z(q(kr)), each with height H and
widths W;.

Bias builds up because you avoid revisiting already-sampled regions - the system is
“‘pushed” into new territory.

Free-energy estimate emerges in the long-time limit, since

Vibias(2,t) = Z H(kT) exp (_ Z (2 — Zzé{ljng))) )  _F(2)
kr<t i=1 [

In standard meta-dynamics, all hills have the same height H. In well-tempered meta-

dynamicsm], one lets the effective hill height decay as more bias accumulates:

Viias (2(q(kT)), k) )
kg AT :

H; = Hyexp (—

so that deep wells get filled more slowly. The resulting bias converges to a fraction of the
true free energy:

AT
lim Viias (Z, t) =

Jm —WF(Z) =+ const.

so by choosing the "bias temperature" AT, you control the trade-off between exploration
speed and accuracy of F(z). Meta-dynamics also has several extensions to accelerate



convergence and improve computational performance, such as the muItipIe-waIkerW] and
said well-tempered versions.

Meta-dynamics can handle a few CVs simultaneously in a trivial manner, which spares us
from having to find a single perfect CV. Instead, an appropriate set of CVs allows us to
converge an insightful multidimensional free energy landscape, in which (meta)stable states
and connecting MFEPs can be identified. In practice however, especially when investigating
complex transitions, the number of CVs is limited to N = 3, because of the exponential
growth of computational cost with CV dimensionality.

For the glycine what would be not enough we need to find another way

2.4 Path-Meta-dynamics

In order to tackle complex transitions that require many CVs, path-based methods were
developed(parallel-tempering meta-dynamics,_bias-exchange meta-dynamics,_transition-
tempered meta-dynamics, infrequent meta-dynamics, funnel meta-dynamics, adaptive gaussian
meta-dynamics, on-the-fly probability enhanced sampling).

For example, if we want to make SN2 nucleophilic substitution in solution:

Key chemical events are concerted bond-forming to the nucleophile (Nu) and bond-breaking
from the leaving group (LG), plus solvent reorganization around both.

Typical CVs(IV ~ 5 — 8) is that reaction would be:

(d¢) g the distance between the central carbon and LG

(dc) nu the distance between the central carbon and Nu

C Ny the coordination number of solvent oxygens around LG

CNyy the coordination number of solvent oxygens around Nu

0rc—c—nu, the Nu-C-LG angle(inversion coordinate)

A solvent-orientation collective coordinate (e.g. projection of water dipole along the reaction
axis)

Optional dihedral(s) if the Nu or LG has internal rotors that gate the approach

Those many CVs are necessary for the SN2. The SN2 barrier and mechanism depend not
just on the two bond distances but also on how the solvent shell reorganizes to stabilize
charge build-up on LG and Nu in the transition state.


https://www.researchgate.net/publication/339445770_Meta-dynamics_of_paths
https://www.researchgate.net/publication/339445770_Meta-dynamics_of_paths
https://www.researchgate.net/publication/339445770_Meta-dynamics_of_paths
https://en.wikipedia.org/wiki/SN2_reaction
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The scene captures early, “reactant-side” snapshot where the SN2 system just after the
nucleophile (blue) begins its approach. In the 3D view the Nu — C distance is still long, while
the C — LG bond (red) remains intact. The bar chart of collective variables (CV's) shows
moderate solvent re-orientation and only partial solvent coordination around both Nu and LG,
consistent with an early stage. In the free-energy profile the marker sits near o ~ 0.3, on the
rising limb that leads to the transition state, and the slider beneath confirms that reaction
progress is still low (~ 3%).
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Fig. 8
Here the nucleophile has almost completed the substitution: the Nu — C bond is short, the
LG — C bond is greatly elongated, and solvent molecules have reorganised to stabilise the



emerging charges. The CV bars reflect this shift - large coordination to Nu, diminished
coordination to LG, and an increased solvent-orientation value. On the free-energy plot the
marker now lies far to the right (o ~ 0.94) on the downhill path from the transition state toward
products, matching the reaction-progress slider that reads (=~ 94 %).

In these schemes, a path-CV is introduced.

Those paths are simply a continuous, one-dimensional curve through the high-dimensional CV
space that links two end states A and B. Concretely, a path is a parametrized mapping
s(o):[0,1] — RN

such that, s(0) sits in basin A(reactant or initial state) and s(1) sits in basin B(product or final
state)

Then we got the initial guesses("schemes") which consists of:

Linear interpolation in CV-space. We simply draw a straight-line between the CV-vectors of
A and B and discretize it into equal segments.

String method guess, which use a rough preliminary path from a coarse string-method or
from a meta-dynamics run.

Nudged Elastic Band!'®! (NEB) is a chain of replicas (images) connected by springs; you
can take those images as your initial path nodes.

Committor-based sampling“g], a short run of unbiased MD bursts started along some CV-

interpolated pathway and stitch together average transition points to form a path.

And once we picked an initial path s°(c), path-meta-dynamics iteratively “bends” it toward
regions of high transition flux(2] by sampling points z; near the current path via meta-
dynamics bias on the progress coordinate o(z). Computing the average positions of those
samples in each ¢ slice and updating the discrete path nodes toward those averages(while re-

equidistantly reparametrizing)

We would like to ask, why to bother with that? But the answer is clear. This technique
collapses an N-dimensional problem onto a single coordinate o along the path!

We now don't need to fill an exponentially large grid in CV-space[zﬂ, only to refine a one
dimensional curve. In the narrow “tube” limit, the same machinery recovers the minimum free-
energy path (MFEP); in the wider limit, you get the average reactive flux path.

This progress parameter emulates the reaction coordinate and can in principle be connected to
the committor value. Since the transition path curve is not known a priori, the path-CV must be
adaptive. If we assume that, in the vicinity of the path, the iso-committor planes[zz] S, are
perpendicular to s(o), and that the configurational probability is a good indicator of the transition
flux density, then we can converge the average transition path by iteratively adapting a guess
path to the cumulative average density: s,(o,) = (2),,


https://en.wikipedia.org/wiki/A_priori_and_a_posteriori
https://en.wikipedia.org/wiki/Linear_interpolation

We slice our MD samples into "bins" according to their current value of the progress coordinate
o(z). For each bin(labelled ¢,), we compute the arithmetic mean of the z-vectors in that bin:
(2)o, then we move our path node s,(o,) to that mean position.

Like it was said the key advantage of PMD is that the meta-dynamics biasing can be performed
on the 1D progress parameter along the adaptive path-CV, instead of the N—dimensional CV-
space. PMD is able to converge a path, and the free energy along it, with a sublinear rise in
computational cost with respect to the growth in CV dimensionality (instead of the exponential
relation when not using a path-CV)

How it is calculated?

Numerically, the adaptive path-CV is implemented as a set of M ordered nodes (coordinates in
CV-space) sy(o4,t) — sz with j = 1,..., M, where the t; is the discrete time of path updates.
The projection of any point z onto the path is done considering the closest two nodes, and o is
obtained by interpolation. This approach requires equidistant nodes which are imposed by a
reparameterization step after each path update. The update step for the path nodes is done by

ot kWi X (2 — s"(o(zk)))

! 7 Dok ft"_kwj,k

st — sti(o(zp
w0, — maz [07(1_|| i (t( M) |
s — 85 |l

, Where k is the current MD step and w is the weight of the adjustment, which is non-zero only

S

where

for the two nodes closest to the average CV density.

This is very hard to unpack at the first glance, but | will try. Let’s unpack the numerical update of
the path-nodes 33 — s;?“ in a series of clear steps

Discretize the path into nodes. At update time ¢;, the continuous path s(o) is represented
by M discrete nodes

gi,...,si\}}

{s1,s
These are spaced evenly in the o—parameter (after the previous reparameterization).
Collect MD samples {z,} since the last update. As the MD runs (with meta-dynamics
bias on o), you accumulate configurations z; at each MD step k.
Project each sample onto the current path. For each sample z;, we need to find it's
projection s (o (zx)) on the discrete path(by locating the two nearest nodes and linearly
interpolating). After that we compute the vector displacement Az, = 2, — s (o(2x))
Compute the local weight w;; of sample k& on node j. In our case only the two nodes
bracketing the projection get nonzero weight. For node j


https://en.wikipedia.org/wiki/Sublinear_function
https://en.wikipedia.org/wiki/Projection_(mathematics)
https://en.wikipedia.org/wiki/Equidistant

| 55 — st(o(z1))) |
wr =maz |0, 1— - -
|85 =851 |l

geometrically, this tapers linearly from 1 (if the sample projects exactly onto node j) down to
0 at the next node.

Apply a "fade" factor for older samples. To let the path "forget" old history, each past
sample at MD step k is further multiplied by

fti*k,f — e*ln(2)/7'1/2

so that samples older than one half-life 7, count half as much.

Accumulate weighted displacements and normalize. For each node j, build the
numerator and denominator

numerator; = Z (& w; ) Az
%

. t—k
denominator; = E £ wj
k

Update the node position. Shift each node by the average weighted displacement:

‘. numerator;
i+l ot J
=87+ : .
J 7 denominator;

S

After those steps finally, the M updated nodes are "re-evened out" so that they again sit at
equal o—intervals along the new curve s(o) . So the discrete path steadily bends toward the
true, flux weighted transition tube.



Single path-update iteration in 2D CV space
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One adaptive-update step in a toy 2D CV space. Blue crosses mark the MD configurations
gathered since the last update; the blue line with dots is the original straight-line guess
connecting reactant and product. Applying the node-update rule pulls each node toward the
weighted mean of the samples in its neighbourhood, yielding the orange path. Notice how every
node has shifted slightly upward, exactly where the samples are denser, illustrating how path-
meta-dynamics bends an initial guess toward the true, flux-weighted transition tube while
keeping the nodes evenly spaced along the progress coordinate 0.

Additionally, we can improve the method by placing trailing nodes at both ends of the path to
better capture the free-energy basins. For the basic code, the results look like this:
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Straight-ish polyline, with no tube potential( or a very soft one), path cuts straight across
contour rings, even wandering over higher-energy regions. The algorithm was density-driven. It
found a shortcut that balances flux coming from different directions - good for the average
reactive current, not optimal in free energy



For the adaptive implementation using the tube mechanism, the results are as follows:
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Smooth arc hugging the blue valley, with tube potential applied(probably fairly stiff), where path
bends around the central barrier, consistently following the lowest-energy lane. The narrow tube
forced sampling right on the curve, this updates followed local V F, which recovered the MFEP

The restraint we add is a harmonic spring on the distance between every instantaneous
configuration z; and its projection onto the current path s'i(o(z}))

1 ,
Utube(zk) = Ektube || 2k — St’(U(Zk)) ||2

So in wide tube(small ki) Samples are free to stray a fair distance from the path. The path-


https://en.wikipedia.org/wiki/Harmonic_oscillator

update rule therefore averages over a broad density of configurations you converge to the
average transition path(sometimes called the reactive flux tube). With narrow tube(large ktupe
"infinitesimally narrow" in the limit) sampling is confined to a thin corridor around the current
curve. The only points that matter sit very close to the path, so the update step is dominated by
the local free-energy gradient rather tan by a global density average. In this limit the algorithm
chases the minimum-free-energy path (MFEP) - the steepest-descent trajectory that traces the
valley floor between A and B.

So because we can tune ki, We have a knob that continuously interpolates between “density-
driven” (average path) and “gradient-driven” (MFEP) behaviour.

Then we would work on the trailing nodes at both ends. Those are just extra, flexible points
tacked onto the fixed endpoints in basins A and B. Because the meta-dynamics bias keeps
pushing the system out of the wells, the trailing nodes can slide down the funnel and settle
exactly where the free-energy valley floor is, giving the main section of the path a cleaner
launch/landing zone. Without them, the first movable node would often sit too high up the wall
of the basin and the path would start with an awkward kink. Something we can indeed spot in
the first plot but not in the second.

Meta-dynamics then steps in as the workhorse that breathes life into the adaptive path-CV: by
depositing a time-dependent series of Gaussian hills directly on the progress coordinate o , it
repeatedly pushes the system back and forth along the curve, ensuring that every segment of
the transition tube is visited many times.

Because each new hill partially overwrites the ones laid down earlier, the bias continually “self-
heals,” and in the long-time limit the accumulated potential converges to the negative of the true
one-dimensional free-energy profile, Viias(o,t — o0) = —F (o) . In practice this means that a
single PMD run yields both the optimal pathway (average path or MFEP, depending on how
tight you make the tube) and the quantitative free-energy barrier along it.

All of the usual meta-dynamics refinements - well-tempered damping of hill heights, transition-
tempered focusing on the barrier region, multiple-walker parallelisation - plug in without

(23]

modification, and one can even swap meta-dynamics for umbrella sampling'“~!, steered

MD!?4, or perpendicular biasing whenever a particular segment of the mechanism demands
finer control.

Thus the path algorithm and meta-dynamics form a self-consistent loop: meta-dynamics drives
exploration and reconstructs the free energy, the path update bends the curve toward the
physically relevant channel, and the process iterates until both geometry and energetics have
converged.



The whole output looks right now like this
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Fig. 12

Left: the final path (black) connecting basins A and B winds smoothly along the valley floor of
the 2D free-energy surface (contours and colour map). Green and red dots are the flexible
trailing nodes that sit inside the basins, giving the main section a kink-free launch and landing.
Right: a time-trace of the path evolution: every faint poly-line is one intermediate node set
during successive updates. Beginning with a crude straight guess, the nodes first fan out within
the wide harmonic tube, then tighten and slide downhill as the tube is narrowed, ultimately
collapsing onto the single, high-flux channel shown on the left. The two panels together
illustrate how the spring-tube restraint and iterative updates steer the curve from a density-
dominated average toward the minimum-free-energy (MFEP) trajectory.

Alright, that concludes our introduction to the topic. Let's now move on to the examples
presented in the PLUMED Masterclass.

2.5 Muller—-Brown Potential Exploration
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Miiller—Brown potential energy surface with contour shading reveals the rugged two—
dimensional landscape used in the exercise: two deep minima (dark purple) sit in the lower-right
and upper-left, separated by a broad saddle and flanked by a shallow mid-basin. Energies rise
steeply toward the yellow plateau at the far right, creating ~ 5kgT barriers between wells at the
chosen simulation temperature.

In our first exercise, we ran a straightforward MD simulation on the classicMuller-Brown (MB)

[25] potential energy surface (PES), using PLUMED’s pesmd engine. Below is the snapshot of
our sampling:
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Fig. 14

Plain-MD sampling footprint with the green trajectory remains trapped in the lower-right well,
oscillating within a tight oval around (z ~ 0.6,y ~ 0). No excursions reach the neighbouring
basins or the ridge: with T = 0.5 and friction v = 0.1the system never acquires enough thermal
energy to surmount the Mdller-Brown batrriers.

We can see that the sampling is confined. The trajectory (green line) sits tightly around one
minimum (around cv. z =~ 0.6, cv.y =~ 0 ). You never see it wander into the upper-left basin or
cross the ridge to the right, it's “stuck” in that well. We can also see that the cloud of points is
narrow( Az, Ay < 0.05) ), reflecting the low temperature (T' = 0.5) and moderate friction

(v = 0.1). The thermal fluctuations are relatively small.

With these plain MD settings the system doesn’t gain enough energy to hop the 5k5T barrier to
the other wells.



https://en.wikipedia.org/wiki/Thermal_fluctuations
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Fig. 15

Time traces of the collective variables. Purple (cv. ) and teal (cv.y) traces fluctuate around
fixed mean values with amplitudes < 0.05, confirming the visual impression from Fig. 14. Over
half-a-million integration steps the coordinates stay confined, illustrating the fundamental
limitation of plain MD on rough landscapes: without biasing, rare barrier-crossing events are
exceedingly unlikely on affordable time scales.

2.5.1 Why Plain MD Gets “Stuck”?

(following the Miiller-Brown exercise from the PLUMED Masterclass)

The MB surface has multiple minima separated by significant barriers. In plain Langevin
dynamics, the temperature controls the average kinetic energy. Friction damps motion, making
long “ballistic” hops rare. Timestep and simulation length merely scale how many small
fluctuations you collect. At T' = 0.5, the barrier height of ~ 5k 5T is prohibitive: rare events on
MD timescales. If we want more exploration without invoking meta-dynamics or path-CV, we
can tweak the MD “knobs”:


https://en.wikipedia.org/wiki/Langevin_dynamics
https://en.wikipedia.org/wiki/Langevin_dynamics

Parameter Effect Suggested Change

Temperature Increases barrier hops Raise T'to 1.0 or 1.5
Friction Reduces damping Lower ~ to 0.01 — 0.05
Timestep Speeds up exploration Increase At (0.002-0.005) ps
Simulation length More sampling Double or triple nstep

Random seed / start Different noise / basin Change idum, posx_init

By increasing the temperature or reducing friction, the particle gains more kinetic energy and

fewer dissipative losses!?%! - making barrier crossings more probable. Extending the run
length or using a larger timestep further improves the odds of hopping to other minima.
These modifications are reflected in the input file.

nstep 5000000 ;
temperature 1.5 ;
friction 0.05 ;
At 0.002 ;
. (remaining inputs unchanged) ...
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Fig. 16

"Pushed” plain-MD still hugs the same well and even after cranking the knobs

(T = 1.5, = 0.05,10 x longer run) the cyan trajectory merely fattens its oval around the lower-
right Miiller-Brown minimum; no points reach the mid-basin or the upper-left well. The hotter,
less damped particle explores a wider patch of the valley floor but the ~ 5kgT ridge remains
insurmountable without bias.
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Fig. 17

Time traces confirm localisation. Cv. x (purple) now wanders by +0.15 and Cv.y (green) by
+0.5-roughly double the earlier amplitudes-yet both signals stay centred near their original
means for five million steps. The absence of level-shifts or large excursions underscores the
lesson: simply raising temperature or extending simulation time yields diminishing returns

against multi-kilojoule barriers!?’] highlighting the need for dedicated biasing techniques.

2.5.2 New basin escape approach

(following the Miiller-Brown exercise from the PLUMED Masterclass)

Well, we've got some learning on that. Plain MD - even when you push it - struggles to
overcome free-energy barriers that are several k5T high. What | have demonstrated is that
extending time or raising temperature yields diminishing returns and can distort the physics[28] if
you go too far. Also to efficiently explore multiple basins, you need biasing methods that “fill in”
barriers, rather than hoping for a lucky thermal kick.

The final method involves increasing the temperature tenfold. Let’'s examine the results now,
along with the corresponding step sizes.
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Fig. 18

Barrier-crossing achieved at the price of “over-heating.” Raising the temperature by an order of
magnitude unleashes the walker: the turquoise trajectory now shuttles back and forth between
the lower-right well and the mid-basin at (y ~ 1.5), repeatedly traversing the Miiller—Brown
saddle. Although the run finally escapes the original minimum, the path fans out into high-
energy (yellow) regions that would be thermally inaccessible at physically realistic T, illustrating
how brute-force heating trades accuracy for reach.
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Fig. 19
Collective-variable traces reveal erratic, high-T dynamics. The purple Cv.x and green Cv.y



series exhibit large, abrupt jumps and long dwell periods in two distinct value ranges, confirming
frequent basin-to-basin hops. Between these plateaus the signals spike to extreme values,
signalling excursions onto steep ridges of the surface. Such jagged, high-amplitude motion
underscores the drawback of the temperature-boost strategy: enhanced exploration comes with
distorted kinetics and a loss of fidelity to the true free-energy landscape.

2.5.3 Introducing Meta-dynamics to the problem

(following the Miiller-Brown exercise from the PLUMED Masterclass)
Let’s take this insight forward by adding a simple meta-dynamics block to our plumed.dat file.
Here's a minimal example that | will "build up" bias on cv, and cvy

UNITS LENGTH=nm TIME=fs ENERGY=kcal/mol

cv: DISTANCE ATOMS=1,2 COMPONENTS

LOWER_WALLS ARG=cv.x,cv.y AT={-1.5,-0.5} KAPPA={1000,1000}
UPPER_WALLS ARG=cv.x,cv.y AT={ 1.5, 2.5} KAPPA={1000,1000}

metad: METAD ...
ARG=cv.x,cv.y
SIGMA=0.10,0.10
HEIGHT=0.1
PACE=500
BIASFACTOR=10
FILE=HILLS
. METAD

PRINT ARG=cv.x,cv.y,metad.bias STRIDE=100 FILE=colvar.out

We may ask right now, how to choose meta-dynamics parameters? Well, When selecting
parameters for meta-dynamics, a good approach is to match the Gaussian width (SIGMA) to
the natural fluctuation scale of your collective variables -which usually is around 0.05 — 0.15 nm.
If this width is too small, your energy surface becomes fragmented or "pixelated"; if it's too



large, you lose important details. The Gaussian height (HEIGHT) should be about 1 k5T
(approximately 0.1 fn"—g‘ll at room temperature), which is gentle enough not to distort your
system's kinetics yet effective enough to speed up sampling. Depositing Gaussians every 0.5 ps
(PACE = 500 steps at 1 fs per step) strikes a balance: it's frequent enough to fill energy basins
efficiently without excessive overlap. A typical BIASFACTOR of around 10 ensures your
simulation remains "well-tempered," meaning it gradually smooths out the free-energy
landscape without losing critical features.

In practice, keep in mind that your Gaussians don't have to be spherical - if your energy
landscape has more pronounced features in one direction, consider using different widths for
each collective variable. Additionally, aim for Gaussian heights roughly equal to one contour
interval of your energy map; you don't want them so small they're negligible, nor so large they
overwhelm the basin. For example, during a typical 5 ns simulation, you'll deposit around 10, 000
Gaussians, enough to thoroughly explore a two-dimensional landscape without over-smoothing
it.

These parameter choices will help you achieve publication-quality results by accelerating
exploration without compromising the fundamental dynamics of your system.

SIGMA should match the natural fluctuation scale(~ 0.05 — 0.15nm here)
HEIGHT kpT biases gently without distorting kinetics
PACE sets how often you add hills, 500 steps ~ 0.5ps with At = 1fs



$ more HILLS

Here have the HILLS file, which shows where the Gaussians are located.

#! FIELDS time cv.x cv.y sigma_cv.x sigma_cv.y height biasf

#! SET multivariate false

500
0.1

1000
1500
2000
2500
3000
3500

4ooe

4500

Fig. 20

0.6134572527167506
0.1

0.6119534368390872
0.1

0.650100578976523
0.1

0.6146880740398433
0.1

0.5755353961996159
0.1

0.5612959789567544
0.1

0.6309623995U409657
0.1

0.76055951224971628
0.1

0.648318453545444
0.1

0.05216753593333578

1

0.04162710354708714

1

0.001274386356911975

1

0.006U460644182507157

1

.01400800485418734

1

.02059892241639384

1

.02699995782594922

1

.026390262673U6495

1

.01599555968367015

1

First few HILLS records in plain-text HILLS file lists every Gaussian that well-tempered meta-
dynamics has deposited so far. For each entry you see the simulation time (steps), the centre in
(Cv. z,Cv.y), the widths o,,a,(= 0.1), the Gaussian height (initially 0.1%2.) and the running

bias factor. The gradual fall-off of the “height” column confirms that the bias is being tempered
as intended.




Next, we need to sum those hills to reconstruct the energy landscape.

$ plumed sum_hills --hills HILLS —-mintozero

PLUMED: PLUMED is starting

PLUMED: Version: 2.9.3 (git: Unknown) compiled on May 8 2025 at 14:37:59
PLUMED: Please cite these papers when using PLUMED [1][2]

PLUMED: For further information see the PLUMED web page at http://www.plumed
.org

PLUMED: Root: /home/konrad/opt/plumed-2.9.3/1ib/plumed

PLUMED: For installed feature, see /home/konrad/opt/plumed-2.9.3/1lib/plumed/
src/config/config.txt

PLUMED: Molecular dynamics engine:

PLUMED: Precision of reals: 8

PLUMED: Running over 1 node

PLUMED: Number of threads: 1

PLUMED: Cache line size: 512

PLUMED: Number of atoms: 1

PLUMED: File suffix:

PLUMED: Timestep: 0.000000

PLUMED: KbT has not been set by the MD engine

PLUMED: It should be set by hand where needed

PLUMED: Relevant bibliography:

PLUMED: [1] The PLUMED consortium, Nat. Methods 16, 670 (2019)

PLUMED: [2] Tribello, Bonomi, Branduardi, Camilloni, and Bussi, Comput.
ys. Commun. 185, 664 (2014)

PLUMED: Please read and cite where appropriate!

PLUMED: Finished setup

PLUMED: Action FAKE

PLUMED: with label cv

PLUMED: added component to this action:

PLUMED: added component to this action:

PLUMED: Action FUNCSUMHILLS

PLUMED: with label @1

PLUMED: with arguments cv.x cv.y

PLUMED: Qutput format is %14.9f

PLUMED: hillsfile : HILLS

PLUMED:

PLUMED: No boundaries defined: need to do a prescreening of hills
PLUMED: doing serialread

PLUMED: opening file HILLS

Fig. 21

Reconstructing the bias with plumed sum_hills where the terminal log shows PLUMED
reading the HILLS file, recognising the two collective variables, and serially adding the stored
Gaussians. This command produces a grid-based free-energy surface that can be plotted or
queried to monitor convergence.

The collective variables currently appear as follows. This is promising, as the Gaussians are
steadily pushed outward in circular patterns away from the minima, as shown in the plot.



™ Gnuplot window 0 E@E
o & & & /{'

1.5 T T T T T T T

T |
'colvarout' u 1:2 ———

1.5 I I I
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 50000C

-3051.97, 0.796390

Fig. 22

Early meta-dynamics push-out (Cv. x only) where the purple trace starts around 0.6, oscillates
narrowly, then - as Gaussians accumulate - undergoes larger excursions first to negative values
and finally back toward +0.9. The widening envelope illustrates how the growing bias “forces”
the system outward in concentric rings, steadily emptying the initial minimum.

The system escapes into the intermediate region. It spends time in both the initial and
intermediate states, and after roughly 200,000 steps, it overcomes the bottleneck and reaches
the product state. We observe one crossing and one recrossing.



[} Gnuplot window 0 = lE]lx]

O e

W Ay 0! W M M !

M
o

ooooooooooooooooooooooooooooooooooooooooooooooooooooo

Fig. 23

Two-coordinate time series reveal a successful barrier crossing. Both Cv. x (purple) and Cv.y
(green) remain confined until ~ 2 x 10° steps, after which they jump to a new plateau that
corresponds to the product basin, linger, and eventually recross. The clear plateaus separated
by abrupt transitions demonstrate that the bias has lowered the ~ 5kgT ridge enough for
repeated hopping.

And that’s the result.
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Fig. 24
Final sampling footprint under meta-dynamics. Scatter points now populate two elongated, low-
energy troughs - the reactant and product valleys - while high-energy regions remain sparsely



visited. Compared with the brute-force high-temperature run, meta-dynamics achieves thorough
exploration of the kinetically relevant pathways without driving the system into
thermodynamically irrelevant, yellow plateau regions.

What an efficient landscape search, right? It focuses sampling on the low-energy paths. It still
scales exponentially, but with umbrella sampling we’d end up gridding even the regions we're
not interested in. Now we need to determine whether we’ve converged and sampled sufficiently.
How can we assess this? One approach is to monitor the relative energy differences over time.
Even as we continuously add Gaussians, these differences should stabilize. We can compute a
running_average at each point - or simply evaluate the average once the simulation is complete
- to check for convergence.

We can employ well-tempered meta-dynamics to converge the Gaussians dynamically -
reducing their heights on the fly as the simulation progresses.

2.5.4 Well-tempered PMD

(following the Miiller-Brown exercise from the PLUMED Masterclass)

When we try to get the first path on the map, we should start with the most naive guess: draw a
straight line through the Muller—Brown landscape by linearly interpolating the collective-variable
space (Fig. 25). Each black dot is a node; between them the genpath routine simply connects
the dots. At this point the path carries no physics - it is only a ruler-straight scaffold on which
we will build something smarter.
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https://en.wikipedia.org/wiki/Exponential_growth
https://en.wikipedia.org/wiki/Moving_average

Naive straight-line scaffold with the purple poly-line is nothing more than a linear interpolation
between the two Miiller-Brown minima. It slices straight across high-energy contour rings-
geometrically shortest but thermodynamically absurd. The black dots are the equally spaced
nodes that will later be allowed to move.

Measuring how the path relaxes gives us a quick diagnostic is the path-to-configuration
distance plotted versus simulation time (Fig. 26). Every time the purple trace spikes, the current
configuration has drifted far away from the straight-line guess; every dip means we have slid
back onto it. Large, persistent oscillations here are a red flag - the system is telling us that our

path fails to track the valley floor.
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Fig. 26
Path-to-configuration distance before restraints. Each spike in the purple trace marks a moment

when the walker has drifted far from the straight path; dips show brief returns. The large, erratic
excursions warn that the initial path does not follow the energetic valley floor and offers no
meaningful guidance to the dynamics.

Switching on the tube potential keep the walker from drifting too far. We wrap the path in a
harmonic “tube” and let PLUMED restrain the orthogonal displacement:

tube: RESTRAINT ARG=pcv.z AT=0.0 KAPPA=1000.0


https://en.wikipedia.org/wiki/Orthogonal_coordinates

Think of it as a soft pipe encasing the poly-line; configurations are allowed to rattle inside, but
not to escape. With the tube active, the nodes (blue dots) begin to bow toward the high-density
region (Fig. 28). Because the path is now adaptive, each node shift is weighted by the local
population - z_avg.cv.x and z_avg.cv.z - so that crowded slices pull harder than sparse
ones.

The parabola on the distance of the path. It tries to now the nodes are on those positions.

konrad@konrad: ~/plumed_nm X + o~

#! FIELDS Step Time nCV nNodes

500000 500000.000000 2 60

#! FIELDS node cv.x cv.y z_avg_cv.X Z_avg_CcVv.y wsum
1.757895 -1.578947 0.000000 0.000000 0.000000

.700000 -1.500000 ©0.000000 0.000000 0.000000

.642105 -1.421053 0.000000 0.000000 0.000000

.584211 -1.3421605 0.000000 0.000000 0.P00C00

.526316 -1.263158 0.000000 0.000000 0.000000

.468421 -1.184211 ©0.000000 0.000000 0.000000

.410526 -1.105263 0.000000 0.000000 0.000000

.352632 -1.026316 0.000000 0.000000 0.000000

.294737 -0.947368 0.000000 0.000000 0.000000

.236842 .868421 0.000000 0.000000 ©.000000

.178947 .789U74 0.000000 0.000000 0.000000

.121053 .710526 0.000000 0.00Q0000 0.000000

.063158 .631579 0.000000 0.000000 0.000000

.005263 .552632 0.000000 0.000000 0.000000

.9u7368 .U73684 0.000000 0.000000 0.000000

. 889474 .394737 0.000000 0.000000 0.000000

.831579 .315789 1.464688 1.074105 12.028932

. 773684 .236842 4@3.792375 296.114408 UUEO.T786918
."715789 .157895 2743.626892 2011.993054 31337.272211
.657895 .078947 1810.606486 1327.778089 26923.488081
.600000 0.000000 585.893247 U29.6550U8 34923.517252
.5042105 0.078947 -279.549U461 -205.002938 24954 .757178
.484211 ©0.157895 -739.726158 -542.465849 18374.578678
.426316 0.236842 -913.677071 -670.029852 18550.071778
.368421 0.315789 -805.775001 -590.901668 17791.673028
.310526 0.394737 -735.664212 -539.487089 17893.177890
.252632 0.473684 -960.266381 -704.195346 19282.631871
.194737 0.552632 -1329.959731 -975.303803 19324.480175
.136842 0.631579 -1727.9685U2 -1267.176931 18501.171710
.078947 0.710526 -2011.103615 -1474.809318 16976.052636
.021053 0.789474 -1810.221896 -1327.496057 14099.106433
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Fig. 27

First adaptive update table. This excerpt of PLUMED’s node log lists, for every path node, the
weighted averages of the configurations that fell into its c—slice ( z_avg.cv.x, z_avg.cv.y)
and the cumulative weight (wsum ). Near the ends the weights remain zero - little sampling -
whereas mid-path nodes have begun to pull toward populated regions, signalling the onset of
density-driven bending.

In this method, the z_avg.cv.x and z_avg.cv.z variables are weighted, and during the
adaptive-path procedure we update the density and flux using a simple distance/weight


https://en.wikipedia.org/wiki/Polygonal_chain

algorithm. To let the endpoints “breathe” and avoid an artificial kink where the free-energy
basins meet the flexible path segment, we attach 20 trailing and 20 leading nodes that can slide
into the minima, while the central 20 path nodes adjust the transition segment (Fig. 28). These
extra nodes act like elastic shock-absorbers, anchoring the path smoothly inside each well.

The final setup thus comprises 20 trailing nodes, 20 leading nodes, and 20 core path nodes.
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Fig. 28

Path after tube restraint and trailing nodes. With a harmonic tube wrapped around it and 20
flexible trailing nodes at each end, the magenta path bows gently into the low-energy gutter.
Turquoise sampling points now cling to a narrow ribbon along the curve, indicating that
orthogonal wanderings are tamed while the transition segment smoothly links the basins.

If the path behavior becomes unstable (Fig. 29) - “thrashing” erratically between different
shapes instead of converging - it usually means the tube restraint was set too wide or the
biasing was too aggressive. In such cases, there is effectively a tug-of-war between entropy
(the path taking shortcuts) and energy (the path trying to stay in the valley). A chronically jagged
o(t) trace is a clear sign that the Gaussian hills are too large for the landscape or that the path
update interval is too short, causing the algorithm to overshoot.
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Fig. 29

“Thrashing” diagnostic for an over-aggressive setup. Here the o—coordinate flips wildly between
plateaus and shows high-frequency jitter. Such behaviour means the bias hills or update stride
are too large relative to the landscape: the path alternately follows entropic shortcuts and
steepest-descent routes without settling, a cue to relax the parameters.

Finally, once the path has stabilized, we can take a slice through the free energy surface along
the converged path. In practice, we project the walker’s sampled density onto the (CV.z, CV. 2)
plane and directly visualize the valley walls carved out by the adaptive path (Fig. 30).
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Fig. 30
One-dimensional free-energy slice along the converged path (t = 500 ps). Projected onto o, the
profile now exhibits two ~ —200% wells separated by a 70 — Soﬁbarrier at simga ~ 0.5. The

deep, smooth trough confirms that the adaptive path tracks the true valley floor rather than
cresting ridges.

Based on this, we can integrate to calculate the area under the valleys and quantify the
difference - thanks to the trailing nodes.

And how many Gaussians are enough? In well-tempered mode the algorithm needed only 60
hills to fill the basin, cross the saddle, and recross back to the reactant state (Fig. 31). The
running average of the bias height plateaus after roughly 40 hills, a convenient heuristic that the
free-energy difference has converged within ~ 1%. If the running average still slopes after

three or four bias half-lives, either widen SIGMA or lower HEIGHT - the simulation is painting the
landscape with a brush that is too fine.
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Fig. 31

Convergence of the well-tempered bias. Successive reconstructs of the PMD bias after 10, 20,
60 Gaussians collapse onto one another beyond = 40 hills, showing that the free-energy
difference has stabilised within ~ lmk—f)l. The plateau indicates that the chosen SIGMA, HEIGHT,
and PACE fill the basins efficiently without over-smoothing, completing the landscape in barely
Sixty deposits.

Based on that, we can compute a running average to assess convergence. With the path now
collapsed onto a single progress coordinate o, the one Gaussian width you specify acquires a
very tangible role: it is literally the half-width of each hill along that axis. A sensible rule of
thumb is to match it to the natural jiggle of o during the interval + between hill depositions and to
the spacing between adjacent transition nodes (= 0.5 here). A wider width blurs neighbouring
basins into one another, while a narrower one leaves gaps, so the summed bias becomes
ragged and the free-energy estimate noisy.

The purple o—trace in (Fig. 26) now doubles as a seismograph for the effective diffusion
landscape. Long horizontal plateaus at o ~ 0 and o ~ 1 mark the two Muller-Brown minima;
once the bias nudges the walker past ~ 0.2 or 0.8 it shoots almost ballistically across the mid-
section, because the underlying 2D valley is broad and shallow there. In other words, the
apparent diffusion coefficient varies with position: it is largest where the valley is wide (centre)
and smallest where it narrows into the wells (ends).

Adding the tube restraint sharpens this picture. Even a modest spring constant squeezes the
turquoise cloud that surrounds the magenta path (Fig. 27) into a narrow ribbon, forcing
configurations to slide along the curve instead of short-cutting through CV space. The
transverse spread collapses, o diffusion slows just a touch, and - critically - the bias converges



faster because no Gaussians are wasted off the path. Crank the force constant much beyond

100 — 200-=L  however, and you over-quench orthogonal fluctuations; recrossing stall and the

mol ’

whole algorithm becomes sluggish.

With 20 transition nodes bracketed by 20 trailing nodes on each side, the fixed-path meta-
dynamics run produces a free-energy profile that is both smooth and fully converged: two wells
at o ~ 0 and 1 with depths of about —200£—§1, separated by a 70 — 801}[‘1—‘3)1 barrier centred at

o ~ 0.5. Because the geometry of the path itself is locked, that slice is the exact line integral you
would obtain by integrating the full Muller- Brown surface along the magenta poly-line-
confirmation that the one-dimensional bias has recovered the thermodynamics of the original
2D system without ever leaving the adaptive loop.

2.5.5 Adaptive PMD

The moment we let the nodes move we step into the world of adaptive PMD (Fig. 32).

In this variant the curve is no longer a rigid ruler but a living, breathing object that keeps a time-
weighted diary of every configuration it encounters. The single knob that controls that diary is
HALFLIFE -the number of MD steps after which the influence of a data point decays to 50%.
Put differently, HALFLIFE sets how far into the past the path can “remember”.

A short memory (=~ 10° steps) makes the path almost mercurial. It discards mistakes, chases
density, and snaps into the first low-energy corridor the bias uncovers. That is perfect for the
exploratory phase when you just want the curve to abandon a bad straight-line guess and latch
onto any plausible transition tube.

Dial HALFLIFE up to > 10* steps and the character flips. Now each node behaves like a
cautious statistician, averaging over many recrossings before it agrees to shift. The jitter from
individual Gaussians is ironed out, and what survives is the mean transition pathway weighted
by true flux, not by fleeting noise.

The sweet spot is to combine both moods in a two-stage workflow:

Fast scouting.

Start with generous Gaussians, a permissive or even absent tube restraint, and HALFLIFE
~ 1000. In a few hundred thousand steps the bias will volley the walker back and forth until
both basins are well-trodden and the path has bent into the right valley.

Precision carving.

Freeze the simulation, read the /ast set of nodes with INFILE, shrink SIGMA , tighten the
tube spring, and raise HALFLIFE two orders of magnitude. From this point on the nodes drift
only when multiple independent excursions agree, while well-tempered meta-dynamics
quietly files the residual bumps in the one-dimensional free-energy profile to below ~ kT'.



2.5.5.1 Dealing with multiple product basins

Real chemical reactions rarely follow a simple, linear path from state A — B. Often, a reaction
can end up in multiple distinct final states (for example, two crystallographically different forms
of product B). If an adaptive path simulation begins with only one initial guess, it typically
diverges early, settling into whichever final state it encounters first. To avoid this limitation, two
straightforward methods can be used. First, you can introduce a second reaction coordinate, for
instance by running two parallel paths starting from the same reactant but ending in separate
product states, or by using an additional coordinate that identifies which final state you're
approaching. Alternatively, you can initiate several independent simulations (walkers) on
separate GPUs, each slightly biased toward different product states, and afterward merge their
resulting data once both have reached convergence.

Either strategy keeps PMD agnostic and lets the free energy, not a lucky first hop, decide which
channel prevails.
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Fig. 32

First 38 ps of adaptive PMD. The magenta poly-line - now free to bend - has already abandoned
the straight scaffold and is curling into the dark, low-energy gutter that arcs between the
reactant well (large blue X at Cv.x ~ 0.6 , Cv.y =~ 0) and the upper-left basin. Because
HALFLIFE is still short, each newly visited configuration (turquoise dot) pulls strongly on the
nearest node, giving the curve its kinked, exploratory shape. High-energy ridges (yellow) are
Skirted, while the path hugs the reddish trough, indicating that the algorithm has begun to
recognize and follow the true transition tube within a few tens of picoseconds.

2.6 Multiple-Walker Path-Meta-dynamics



That topic isn’t a concern for me right now, but | may explore it in the future.
These were all the exercises, accompanied by my explanations and insights from Professor
Bernd Ensing, who - with his team - developed these methods and put them into practice.

3. Case Study: Glycine-1-13C

“With the Muller—Brown example completed, we are ready to apply the adaptive path approach
to a real chemical problem: the stepwise formation of glycine in water, as reported by Francisco
Carrascoza et al 2023. In a forthcoming post, | plan to import the reactant and product
snapshots from that study, sketch an initial multi-CV path, and let our two-stage adaptive
protocol reveal the molecular choreography—how formaldehyde, carbon monoxide, and a
proton stitch together into the simplest amino acid (glycine). | will also outline a three-module
simulation scheme designed to mirror the radical reaction pathway illustrated in article
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Fig. 33

Reaction pathway for glycine formation (from Francisco Carrascoza et al 2023). The reaction
starts from carbon monoxide and formaldimine in water and proceeds through several
intermediates (not detailed here) to form glycine. (This figure illustrates the kind of multi-step
reaction the adaptive path approach would need to capture.)

4. Appendix

Topics encountered while studying Prof. Ensing’s lectures / exercises

4.1 Path Collective Variables (Path-CV) & Reaction
Coordinates

Foundations
- Cluster model; defining path collective variables
- Defining reaction coordinates; different reactant states



https://iopscience.iop.org/article/10.3847/1538-4357/acea5b

- Two stable states — path A — B — average transition path; different channels

- From A to B in free-energy space: can | say where | am between A & B? (projection)
Algorithmic workflow

- Start from a guess path — bias dynamics along the path — move nodes to mean density
(transition flux) — maintain equidistant nodes

- Expressed in structures: compute RMSD for reactant structures, optimise those structures
to refine the path

- Method with torsion angles — density sampled — free-energy samples — boftleneck
somewhere here

Path-CV mathematics

- § = position on the path (Euclidean projection)

- z = distance from the path

- Distance to mean density; two nodes + trailing nodes
Simulation strategies

- Single simulation — reaction path & free-energy profile
- Step-wise path

- 8 simultaneous simulations, each = 10 ns

- Torsion-angle rotation has little barrier — zipper-like mechanism
- Leads to 3 factorial pathways

- Sub-linear convergence

- Repellers simulation: move paths in different directions

Path-CV project tools

- Path-map creation

- Initialise Path-CV: equilibrate, compute CV-averages at endpoints, build initial path (linear
interpolation or previous trajectory)

- Choose biasing method (steered MD); enable multiple walker; monitor path & free-energy
profile evolution; tube potential; scale Gaussians by hand

Specialised methods

- Path meta-dynamics (o function; more CVs)

- Single-walker PMD, multiple-walker PMD, multi-PMD

- MuWaMuPaMetaDyn — Multiple-Walker Multiple-Path Meta-dynamics

4.2 Enhanced-Sampling & Rare-Event Techniques

General concept — enhanced sampling

- “All possible bonds are produced and broken” — explore full free-energy landscape
Temperature-based acceleration

- Raising temperature to boost barrier crossing

- Parallel tempering / replica exchange

- Temperature-accelerated dynamics (mix low-T & high-T)



Meta-dynamics family

- No meta-dynamics » plain meta-dynamics » well-tempered meta-dynamics

- Assessing meta-dynamics accuracy: decrease hills upon every recrossing for convergence
- Flood the landscape with hills; localise minimum FE path, then switch to 1 D to converge
further

- “Six collective variables is not doable” » biased six CVs (all-at-once vs independent)

- 8-dimensional landscape - not just 2-D projections

- Lowest free-energy pathway; find hidden profile (reaction coordinates)

Rare-event frameworks

- Transition-interface sampling

- Rare-event methods (general)

- Committor probability: where is the TS?

- Halfway between A and B — iso-committor surface — hyperplane 0 — 0.5 — 1.0

- Average transition pathway (in CV space); symmetric channel; painfully expensive
Accuracy & diagnostics

- How to calculate the projection?

- What if underlying landscape unknown — how to set 6?

- Defining diffusivity in meta-dynamics

4.3 Reaction-Path Sampling & Free-Energy Methods

Finding / sampling a reaction path; SN2 reaction example

Thermodynamic integration

Flooding vs path-based approaches

Reaction channels & paths: good reaction coordinate often hard to define

Rare events in real life; time-scales:

- Proton transfer, enzymatic reactions, organic reactions, phase transitions, protein folding,
polymer relaxation

- Electronic excitation; intra-molecular vibrations; H-O rotation in liquid water

Ab-Initio, Force-Fields & Electronic Processes
DFT / defining force fields
Optimisation strategies in ab initio methods
Electron-transfer / proton-transfer cascades — many CVs
Force-field simulations using Path-CV
Collective-Variable Selection & Machine Learning
“As inputs you need good collective variables.”
ML for CV discovery:
Find CVs with ML — test with Path-CV — sample — better data



Typical CVs: distances within molecule; torsion angles (periodic, high-energy
crossings)

Ramachandran plot for alanine peptide in vacuum (torsion angles periodic —
high-energy crossings)

Simulation Paradigms & Model Hierarchies
Quantum methods

MD / MC
Coarse-grained models
Fluid-mechanics & stochastic networks

Practical Tips
Transition-interface sampling

Mimic environment for single particle (Langevin bath)
Two-particle distance; k = force constant

Lennard-Jones units (restrain everything); defining temperature in energy units
PLUMED-Nest example: polyproline (Alberto) — ID of the egg
Using Gnuplot on Ubuntu - full command syntax for plotting

Molecular dynamics (MD) is a computational simulation technique that models the physical movements
of atoms and molecules over time using Newtonian mechanics. It allows researchers to study the
structural, thermodynamic, and dynamic properties of molecular systems at the atomic level.

PLUMED is an open-source plugin that can be interfaced with many molecular dynamics engines (e.g.,
GROMACS, AMBER, LAMMPS). It provides advanced methods for enhanced sampling, free-energy
calculations, and analysis of molecular simulations.

Masterclasses are intensive workshops or seminars led by experts, designed to deliver in-depth training
on specialized topics; here, PLUMED masterclasses focus on advanced sampling methods, free-energy
calculations and analysis techniques in molecular dynamics.

Meta-dynamics is an enhanced sampling method in molecular dynamics that adds a history-dependent
bias to overcome energy barriers, enabling exploration of rare events and accurate free-energy
landscapes.

CPMD (Car—Parrinello Molecular Dynamics) is an ab initio molecular dynamics method that integrates
electronic structure calculations (via density functional theory) “on the fly” with nuclear motion, allowing for
reactive simulations without predefined force fields.

Free energy simulations are computational techniques (e.g., umbrella sampling, meta-dynamics,
thermodynamic integration) that estimate the free energy differences between molecular states or along
reaction coordinates, providing quantitative insights into reaction mechanisms and stabilities.

Reaction pathways are sequences of molecular configurations that connect reactants to products
through a potential energy surface, often identified by minimum-energy paths or transition states, and
used to understand the mechanism and kinetics of chemical reactions.



Path-meta-dynamics (PMD) is an enhanced-sampling method that applies meta-dynamics bias along a
predefined path, allowing the system to explore and optimize transition pathways between states.
Minimum free-energy path (MFEP) is the trajectory on the multidimensional free-energy surface that
requires the least work to move from reactants to products, often passing through saddle points
(transition states).

MD engine (molecular dynamics engine) is a software package that numerically integrates Newton’s
equations of motion for atoms and molecules - handling force evaluations, neighbor lists,
thermostats/barostats, and trajectories - to simulate the time evolution of molecular systems.

Free energy surface (FES) is a multidimensional landscape defined over collective variables that
assigns to each point z the free energy F(z) = —kpT In P(z), where P(z) is the probability of observing
the system at z. It summarizes the thermodynamic stability and possible transition pathways between
states.

Canonical equilibrium distribution describes the probability density P(q) = --e~#V(@ where V(g) is the
potential energy, 5 = 1/(kgT), kg is Boltzmann’s constant, T' the temperature, and Z the partition function
ensuring normalization.

Standard smooth switching function is a continuous, differentiable function

1- ()" , . - ,
s(r) = - ((’T“m“)) used to count contacts by smoothly turning “on” when interatomic distance r is below

re—T()

cutoff ro and “off” above it, with exponents n < m controlling the sharpness of the switch.

Gaussian kernels in meta-dynamics are bias potentials of the form G(z;t') = wexp(—%),

where w is the height, o the width of each Gaussian deposited at past CV value z(t'), ensuring smooth,
localized biasing of the free-energy surface.

Jerk in the context of molecular dynamics refers to the rate of change of acceleration (third derivative of
position with respect to time), quantifying sudden changes in forces that can introduce numerical
instability.

Well-tempered meta-dynamics is a variant in which the deposited bias height at time (t) scales as

H(t) = Hexp (— kV;ZtT)) where V (s, t) is the bias already added at collective variable s, AT is a “bias-

temperature” parameter, and kg is Boltzmann’s constant - ensuring gradual convergence of the free-
energy estimate.

Multiple-walker meta-dynamics is an approach where several independent simulations (“walkers”) run
in parallel, each depositing bias on a shared global history-dependent potential. This coordination speeds
up exploration of the free-energy surface by combining sampling efforts across all walkers.

Nudged elastic band is a method for finding saddle points and minimum energy paths between known
reactants and products. The method works by optimizing a number of intermediate images along the
reaction path. Each image finds the lowest energy possible while maintaining equal spacing to
neighbouring images. This constrained optimization is done by adding spring forces along the band
between images and by projecting out the component of the force due to the potential perpendicular to
the band.

Committor-based sampling relies on the committor function p(q), the probability that a configuration ¢
will reach product state B before reactant state A. By launching multiple short unbiased MD trajectories
from points along a trial path and estimating their committor values, one identifies configurations with
pa(g) =~ 0.5 (transition states) to refine the reaction pathway.

High transition flux refers to regions along the progress coordinate where the rate (or probability per unit
time) of reactive trajectories crossing a given hypersurface is maximal, indicating the most probable
transition pathways between metastable states.



Grid in CV-space refers to a discretized mesh covering the high-dimensional space of collective
variables (CVs), where each grid point corresponds to a specific set of CV values. Sampling or biasing on
this full grid becomes infeasible as the number of CVs grows, due to the “curse of dimensionality.”
Iso-committor planes are hypersurfaces in configuration space where the committor function pp(q) (the
probability of reaching product before reactant) is constant. They are orthogonal to the ideal reaction
coordinate and partition configurations by equal “commitment” to product or reactant basins.

Umbrella sampling is a biased-simulation technique where the system is restrained to sample
overlapping “windows” along a chosen reaction coordinate by applying harmonic potentials (umbrellas).
By combining the histograms from each window via the Weighted Histogram Analysis Method (WHAM) or
similar, one reconstructs the unbiased free-energy profile.

Steered MD (SMD) is a method where an external time-dependent bias (e.g., a harmonic spring moving
at constant velocity) is applied to selected atoms or collective variables, “pulling” the system along a
predetermined path; analysis of the work performed yields insights into free-energy barriers and
mechanical response.

Miiller-Brown potential is a two-dimensional analytic model PES defined as a sum of Gaussian wells. It
features multiple minima and saddle points, making it a standard testbed for exploring and validating
enhanced-sampling and path-finding algorithms.

Dissipative loss refers to the loss of mechanical energy (kinetic and potential) due to frictional or viscous
forces in the system, which is converted into heat and removed from the sampled degrees of freedom,
thus damping the motion.

Multi-kilojoule barriers are energy barriers on the order of tens of kilojoules per mole (e.g., 15-30
kd/mol). For comparison, at room temperature kT =~ 2.5 kd/mol, so a 20 kd/mol barrier is roughly eight
times the thermal energy, making spontaneous crossing extremely rare without enhanced sampling.
Distorting the physics refers to altering the system’s natural ensemble and dynamics - elevated
temperature or reduced friction can change reaction pathways, violate detailed balance, and sample
configurations that are not representative of the target thermodynamic conditions, leading to inaccurate
kinetics and equilibrium properties.



